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Abstract

We apply unsupervised learning techniques to psychometric data in search of
personality trait clusters. We do not find convincing evidence for the existence of
distinct personality types. However, clustering results suggest two or three potential
groups, differing principally in neuroticism. Further investigation is required.

1 Introduction

Do personality fypes exist? Personality traits surely do. For instance, the Big Five taxonomy
proposes five personality dimensions: openness, conscientiousness, extroversion, agreeableness and
neuroticism (Widiger|2017, 11-32). On the other hand, the existence of distinct personality types
remains contested (Gerlach et al.|2018| 735). Nonetheless, it seems reasonable to assume that stableE]
traits may constitute a “personality” or “character.” A personality type would thus be a collection of
correlated traits.

Interest in grouping individuals into neat, platonic categories dates back at least as far as the Greeks.
Indeed, Hippocrates based a crude theory of medicine upon his belief in four personalities (Merenda
1987, 367). Currently, the Myers-Briggs system (MBTI) proposes sixteen personalities, though the
evidence for this model is sparse (Gerras and Wong|2016, 55). Indeed, critics blame the MBTI
for leveraging the so-called Barnum effect; the tendency to interpret vague descriptions as highly
personal and precise (Pittenger|1993| 6).

A sound personality theory would improve our understanding of others’ needs, preferences, and
motivations. Moreover, such a model provides predictive power; certain types may have particular
tendencies. This information is valuable, and hence, this problem is worthwhile.

We contribute by applying machine learning (ML) techniques to personality test data. In particular,
we rely on clustering algorithms that group “similar” observations. However, more work in this area
is required since we fail to find reliable evidence for the existence of distinct types.

2 Related Work

Gerlach et al.| (2018)) use Gaussian Mixture Models (GMMs) to identify personality trait clusters. In
particular, the researchers apply factor analysis to personality test answers. This technique scores
participants on five personality domains resembling the Big Five traits. However, their method
provides continuous rather than discrete scores.

The researchers find initial evidence suggesting thirteen clusters. Upon investigation, however, this
solution was found to overfit the data. In fact, only four clusters were meaningful. These results imply
four personality types, which |Gerlach et al.|(2018) label “average,” “self-centred,” “reserved,” and
“role-model.” For instance, the self-centred individual is highly extroverted, though low in openness.
Finally, the authors apply the same approach to three other data sets. Impressively, they obtain nearly
identical results. These findings are compelling since all four data sets contain more than one hundred
thousand samples. However, survey data remain prone to various biases.

"Meaning these traits change little over time.
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On the other hand, [Sava and Popal (2011) use K-Means Clustering to identify distinct personality
groups. The researchers find evidence for two solutions, three or five clusters, both revealed to be
stable via cross-validation. Crucially, response bias may explain these results. [Sava and Popa! (2011)
cite related studies which find only three personality types when the data are self-reported. On the
other hand, observational data reveal additional types. Furthermore, clustering results are sensitive to
the data’s country of origin. For instance, clusters may be less obvious or fewer in number when the
surveyed population is “homogeneous.” Finally, the authors propose the five-cluster solution, which
better explains observed behaviours (e.g., smoking habits). Unfortunately, Sava and PopaJs (2011)
sample comprises only 1039 participants (Sava and Popal2011}, 366). Given the relatively low quality
of self-report data, a larger sample size may be preferred.

Mount et al.|(2005) first attempt to define the concept of personality. Interestingly, their definition
echoes our intuition. In particular, the notion of a personality is meaningful if stable characteristics
influence actions (Mount et al.[2005| 448).

The researchers show that personality traits and vocational interests are distinct. More specifically,
hierarchical clustering reveals three initial interest clusters: enterprising-conventional, realistic-
investigative, and artistic-social. Similarly, two initial personality trait clusters form: open-extroverted
and conscientious-stable. However, interests and personality traits merge only during the final step,
implying that both are largely unrelated. Lastly, their model suggests a three-faceted individual
determined by social and vocational interests, as well as degree of achievement striving.

3 Data

3.1 Overview

The data were obtained from Open Psychometrics, an online psychology data repository. The fifty
variables (columns) of interest correspond to fifty personality test questions. Study subjects indicated
their degree of agreement (1-5) with fifty statements about themselves. For instance, “I am the life of
the party” (EXT-1). The questionnaire comprises five sections of ten questions each. Each portion
assesses the strength of a Big Five trait in a participant.

3.2 Preprocessing and Cleaning

The survey’s structure provides a natural way to reduce the data’s dimensionality from fifty to five.
In particular, we sum individuals’ scores from each section; implicitly assuming the validity of the
widely accepted Big Five taxonomy (Allik and McCrae|2002, 1-3). In truth, fifty dimensions may
offer a more accurate representation of the data. However, our algorithms may become impractically
slow due to the sparsity of high-dimensional neighbourhoods (Hastie et al.[2009} 23). Also note that
the data were not normalized or standardized since all variables lie on the same scale.

The data set contains 1,015,341 observations (rows). Unfortunately, 1783 observations were missing
all entries (columns). These examples were removed since imputation is not possible. In fact, mean
imputation is possible, though unwise, since this procedure distorts the empirical CDF (Houari et al.
2014, 100).

Those who recorded the data added an “IPC” variable, indicating the number of records from
each user’s IP address. For “maximum cleanliness,” the codebook indicated that only entries with
IPC values of one should be used. Consequently, we removed all other entries, implying 695,704
remaining data points. Additionally, 1696 observations had zeros in at least one column. Recall that
all questions are scored from one to five. Accordingly, the minimum value for each column should
be ten. Upon inspection, we discovered that many of these examples contained several zero entries
and low scores in all others. We removed these samples since it was unclear what imputation would
entail. Afterwards, we found 685 entries with at least one score lower than ten. We chose to keep
these samples since they were not obviously corrupted. However, an argument could be made for
removing these entries as well. Finally, we proceed with 694,008 observations.

Lastly, the data type is ordinal for all columns. We assume equal intervals; distances between
categories are equal. This assumption appears reasonable, though we mention it in the
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3.3 Exploratory Analysis

Here we display interesting data characteristics, and perform initial investigations. First, we obtained
arandom subsampleﬂ of 5 - 10* variates from each trait (each column). Each plot in the matrix below
provides three density estimates: a histogram, a Gaussian, and a kernel density estimate (KDE). The
histogram details relative frequencies for the subsample, while the Gaussian was fit via maximum
likelihood estimation (MLE) over the entire sample. On the other hand, the kernel density was fit to
the subsample, and the bandwidth determined via Silverman’s heuristic.
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Figure 1: Distributions of Estimated Big Five Trait Scores

The normality assumption seems reasonable for all five variables. However, all five distributions
appear lighter-tailed than Gaussian ones. Indeed, this finding suggests that very low or high scores
are less common than expected from Gaussian data.

Table 1: Estimated Means and Standard Deviations for Big Five Trait Scores

Variable i 1t & 13
Extroversion (E) 302 [302, 30.2] 3.5 [3.5, 3.5]
Neuroticism (N) 304 [30.4, 304] 65 [6.5, 6.5]

Agreeableness (A) 31.6 [31.6, 31.6] 3.6 [3.6, 3.6]
Conscientiousness (C) 31.3 [31.3, 31.3] 3.9 [3.9, 3.9]
Openness (O) 329 [32.9, 329] 3.8 [3.8, 3.9]

There is little uncertainty surrounding population parameter estimates. Interestingly, neuroticism
scores exhibit the highest variance. This finding is significant, though this may be due to the large
sample size. On the other hand, extroversion exhibits the lowest variance of all trait scores.

We now apply principal component analysis (PCA) to better visualize the data, and identify potential
clusters. We obtained the principal components using a (standardized) random subsample of 10° data
points, and then projected these data onto the resulting eigenvectors. The first two and three principal
components explain 55%, and 73% of the subsample variance, respectively.

2Subsampling ensures a scalable approach. Under mild assumptions, sampling from the empirical CDF, Fx,
is roughly equivalent to sampling from the true, unknown CDF, F'x, by the Gilvenko-Cantelli theorem.
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Figure 2a: Samples in Two-Component Space Figure 2b: Samples in Three-Component Space

PC2

Figure 2: PCA Results

There are no obvious clusters; there is only one high-density region in both spaces. Interestingly,
we notice two groups of (potential) outliers near the boundaries of the data. However, these groups
contain relatively few samples compared to the main group. Accordingly, we choose to run clustering
algorithms on the untransformed data.

4 Analysis and Results

4.1 K-Means Clustering

The K-Means Clustering algorithm partitions n data points into X mutually exclusive clusters. Model
hyperparameters include the number of clusters, K, and the distance function. The former can be
determined via elbow and silhouette methods. On the other hand, we use the Euclidean distance
in this analysis. Indeed, this function provides a desirable statistical interpretation: the algorithm

minimizes within-cluster variances (Hastie et al.|[2009, 510).

We restrict our search for K to the set [1, 20] C N. We use four different initial cluster assignments
(seeds) for each value of K. This technique might clarify whether solutions are spurious and
correspond to local minima.
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Figure 3: Squared Ly Distance to Centroid as a Function of K

details the average squared distance between points and their corresponding centroids. The
elbow method suggests choosing the “elbow” of the curve as K. In our case, this technique yields
largely inconclusive results. Indeed, the curves in|figures 3a and 3b|lack obvious elbows. On the
other hand, details the gradienﬂ of the curve. This plot is more informative; notice that the
gradient appears to “flatten” noticeably for K > 7.

3The gradient is calculated via second differences for interior points, and first differences at the boundaries.

The documentation for the NumPy gradient() function cites (1988).
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Figure 4: Mean Silhouette Coefficient as a Function of K

The silhouette coefficient measures the degree of cohesion within each cluster, and varies from -1

B e

@ Mean Over All Runs

(worst) to 1 (optimal). In general, this method is not ideal for massive data given its O(n?) time

complexity (Petrovic|2006, 10). Notice that the silhouette coefficient drops markedly at K = 2, and

once more at K = 5.

Overall, K = 2 and K = 3 appear to be sensible choices for K. We now examine the predicted

clusters for K = 2 and K = 3 from the first of the four runs. Results are illustrated [belowl

Figure 6: Mean and Standard Deviation Estimates for K = 3

The [table] below details estimated centroids.

Table 2: Centroids for K = 2and K = 3

K=2 K=3

Variable ﬂl ﬂz ﬂl ﬂ2 ,&3

Extroversion (E) 30.2 30.2 303 303 30.1
Neuroticism (N) 25.1 356 226 38.0 305
Agreeableness (A) 309 323 306 328 313
Conscientiousness (C) 30.4 322 30.1 329 31.0
Openness (O) 32.6 333 327 337 325
Mixing proportion 0.50 0.50 029 029 042

4 Unconditional Mean
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First consider the K = 2 solution (left). The algorithm has separated the sample in half. We notice
that group two is higher in neuroticism, agreeableness and conscientiousness than group one. On the
other hand, both groups are equal in extroversion, and similar in openness.

Now consider the K = 3 solution (right). Once again, the clusters appear balanced in terms of
mixing proportions. Once more, we notice one group (group two) which dominates others in terms of
neuroticism, agreeableness and conscientiousness. Extroversion does not seem to vary greatly.

Overall, the difference in neuroticism scores is most salient. Interestingly, we noticed that this variable
had the largest variance of all features during the fexploratory analysis| Strangely, we do not recover
any of the types proposed by |Gerlach et al.| (2018)) or Sava and Popal (2011}). Moreover, we cannot
test for significant differences in means since this amounts to data snooping; we are more likely to
find significant differences. However, it may still be useful to analyze various sums of squares. In
particular, the unconditional variance in the j-th variable can be decomposed as follows:

n n n

1 G) G2 - L G) _ AG) y2 L SG) A2
E;(zi — ") = EZ;(% —Ag)? - Z;(MC“’ — D)
TSSG) WSSs@) BSSW)

The proof is given in the Here, ﬂg()i) denotes the estimated mean of the j-th variable
in the cluster corresponding to observation i, C;). Let RY) = WSS /TSSU) and denote by R

the average of R\) over all five variables. If R() is large then the clusters do not account for a
significant portion of the variance in the j-th variable. On the other hand, R illustrates how much
variance is accounted for by the clusters, on average. Crucially, we find that Rx—_o = 0.85, and
Ry -3 = 0.81. As suspected, the clusters do not account for much variation in the observed data.

In the next we employ a probabilistic, parametric clustering algorithm. Unlike the non-
parametric technique explored above, the following algorithm may provide greater interpretability.

4.2 Gaussian Mixture Model

A K-component Gaussian Mixture Model (GMM) assumes the data originate from a mixture of
K Gaussian distributions. Expectation Maximization (EM) is a common method to estimate these
models. Crucially, EM is a “soft” K-Means algorithm, which calculates posterior, class membership
probabilities for each data point (Hastie et al.[2009, 512). The hyperparameter K can be selected via
the Bayesian Information Criterion (BIC), the formula for which is given below.

BIC =p-In(n) —2-1(6%)

Here, [(6*) denotes the value of the log-likelihood function at the optimal parameter vector 6*,
and p, n denote the number of parameters and samples, respectively. Lower BIC values indicate a
parsimonious fit. Notice that the model is increasingly penalized for large p as n increases.

We return to our search for K in the set [1, 20] C N. Once again, we use four different random
starting points for each K. Results are found [below]
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Figure 7: BIC as a Function of K

“The goal is not to minimize this quantity. Indeed, the ratio becomes zero if we create a cluster for each data
point.
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Notice that the curves in lack evident elbows. details the BIC gradient;

the change in BIC becomes insignificant for X > 7. Once again, K = 2 and K = 3 are arguably the
most reasonable choices for K.
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Figure 9: Mean and Standard Deviation Estimates for K = 3

The parameter estimates are given in the table

Table 3: Parameter Estimates for X = 2 and K = 3

K=2 K=3
Variable [},1 ﬂg [Ll ﬂz ﬂg
Extroversion (E) 30.3 30.2 304 234 30.1
Neuroticism (N) 31.8 303 323 23.1 29.4

Agreeableness (A) 305 316 317 23.2 31.2
Conscientiousness (C) 30.3 31.3 31.6 23.1 31.2
Openness (O) 29.2 33.0 326 224 332

Mixing proportion 0.02 098 034 =~0.00 0.66

Consider the K = 2 solution. Unlike the K-Means clusters, these classes are severely imbalanced.
In particular, only 2% of the sample was assigned to group one. Notice that the between-cluster
variance in personality trait scores is marginal. Unfortunately, there is no obvious interpretation for
these findings.

Crucially, convergence to a local minimum is unlikely to be the cause of these results. Indeed, we
repeated the analysis for K = 2 ten times using different starting points. All runs yielded nearly
identical estimates.

The K = 3 solution is likewise incredible. Notice that nearly 0% of the sample was assigned to group
two. This group comprises 2480 members, whose trait scores are far below average (on average).
Moreover, trait scores appear highly variable across individuals within this class.

Here we find that Rx—2 =~ 1, and Rx—3 = 0.97. As suspected, the clusters do not account for much
variation in the data. It remains unclear why we obtained these results. GMMs are relatively flexible
since clusters may be “stretched” or “compressed” by the variance-covariance matrix. We expected
GMMs to yield better results than the K-Means algorithm. In fact, the opposite appears to be true for
these data.
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5 Discussion

We begin by discussing the data and potential sources of bias. Recall that the data were obtained
from an online self-report survey. First, individuals uninterested in online surveys are excluded from
this sample (selection bias). This bias may lead us to underestimate the number of clusters, since
certain personality types may avoid surveys.

Next, participants may only provide socially acceptable answers, or ones that support their self-images
(response/self-serving bias). For instance, individuals may not want to admit that they “shirk their
duties” (CSN-8).

Finally, participants may only give extreme or neutral responses. In the former case, responses
become caricatures of participants. In the latter case, data become equally distorted. This bias may
inflate or decrease variances, depending on the tendencies of surveyed individuals. For example, we
would underestimate the variance of all variables if most individuals provided deceivingly neutral
responses.

Fortunately, the sample size is large. It seems reasonable to assume that a considerable portion of the
data is representative of the global population. Indeed, individuals from 223 countries participated in
the survey. The global nature of the survey may lessen the effect of culture-specific biases. Moreover,
this fact somewhat mitigates the effect of culture on the number of clusters (Section 2)).

We now discuss our methods. First, recall that we assumed equal intervals; we treated ordinal data
as continuous. The aforementioned extreme response bias affects the soundness of this assumption.
For instance, a subject may interpret scores 2 and 3 as “closer” than 1 and 2. If true, the intervals
are no longer equal, and the assumption is unwarranted. However, it is impossible to know whether
participants understood the survey this way. On the other hand, models exist to handle ordinal data;
applying these techniques to this data set constitutes a possible extension.

Next, we only considered two algorithms: K-Means Clustering and GMMs. Other algorithms
and techniques exist, for instance, hierarchical or density-based clustering. However, we sought
to investigate the existence of distinct personality types. Indeed, partitional clustering is entirely
appropriate for this task.

6 Conclusion

We find mixed results; most of our procedures to determine /& were inconclusive. However, K = 2
and K = 3 appeared to be the most reasonable choices for the number of clusters. Unfortunately, the
clusters for K = 2 and K = 3 proved unconvincing upon inspection. Indeed, these clusters did not
account for a significant portion of the variation in the observed data. As noted in the this
may suggest biased data rather than the non-existence of personality types.

Unlike |Gerlach et al.[(2018), we obtained especially poor results from GMMs. Indeed, the K-Means
algorithm provided more interpretable results. In general, the latter technique is more suitable for
high-dimensional, large data since GMMs involve O(ds) matrix inversion (Pinto and Engel|2015),
where d denotes the number of variables.

In summary, we fail to find convincing evidence for the existence of distinct personality types.
However, absence of evidence should not be confused with evidence of absence. In particular, more
research is required to draw a definite conclusion. Possible extensions include repeating the analysis
on other data sets, and using observational rather than self-report data. As mentioned in the|discussion]
exploring other clustering algorithms may also be worthwhile.
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Appendix

Variance Decomposition Proof

Consider a random variable X (9) with corresponding distribution function F(7). Let x;

() denote the

i-th realization of X (). Let 1() denote the sample mean of variates drawn from F). Suppose

that z; is assigned to cluster C';), and let u(] ) denote the mean of points in C;). We claim that the

following equation balances:

S0 a2 = N () a0) ) (e
Zl(xij - p) :Zl( ’ ,ucj*(z)) +ZI(NC]<L) —at)
TSSG) WSS BSS®G)
Proof. Consider T'SS\):
) a2 Z NSl a0 440 a2 OB ) (e
z:l(xi] —M(J)) —z_;( ! /‘Cj'm*‘ﬂcj‘m _“(J)) —z_;(( ’ ch‘m) (,ch(z) _N(j)))

Expanding the quadratic, we obtain:

A()
“CJU

Xn: )

+Z“C<>

We switch to more convenient notation. Suppose that Cy,

i=1

Z( (@

~(5)

)
 Heg, ;

) — )

denotes the k-th cluster, where k €

[1, K] C N. A point z; is assigned to cluster & if and only if i € C(y).

n K
29 A(J) ~(7)
Z: 'ucu +Z,uc()— Z Ciy
Rewriting the rightmost term:
NG )~y N
—Z(x, C() +Z — i) +QZ el
i=1

= Z(xga Nc< ; 24 Z (J)
i=1

N

A(J)

Z(Mg()k) o

k=1

Indeed, the rightmost term vanishes:

= Z(m

Z(_J _Nc() +Z (J)

()
“ij)

A(J) Z (! (@

lEC(k)

MY @) = 10wl - 2]
7€C(k)
D) (|| - 18— O] - 4 )
MC(k) (k) MC(k)
M(J)

O

Variance decompositions like the one above are common in statistics. This demonstration is nothing

novel.
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