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Abstract

We apply unsupervised learning techniques to psychometric data in search of1

personality trait clusters. We do not find convincing evidence for the existence of2

distinct personality types. However, clustering results suggest two or three potential3

groups, differing principally in neuroticism. Further investigation is required.4

1 Introduction5

Do personality types exist? Personality traits surely do. For instance, the Big Five taxonomy6

proposes five personality dimensions: openness, conscientiousness, extroversion, agreeableness and7

neuroticism (Widiger 2017, 11-32). On the other hand, the existence of distinct personality types8

remains contested (Gerlach et al. 2018, 735). Nonetheless, it seems reasonable to assume that stable19

traits may constitute a “personality” or “character.” A personality type would thus be a collection of10

correlated traits.11

Interest in grouping individuals into neat, platonic categories dates back at least as far as the Greeks.12

Indeed, Hippocrates based a crude theory of medicine upon his belief in four personalities (Merenda13

1987, 367). Currently, the Myers-Briggs system (MBTI) proposes sixteen personalities, though the14

evidence for this model is sparse (Gerras and Wong 2016, 55). Indeed, critics blame the MBTI15

for leveraging the so-called Barnum effect; the tendency to interpret vague descriptions as highly16

personal and precise (Pittenger 1993, 6).17

A sound personality theory would improve our understanding of others’ needs, preferences, and18

motivations. Moreover, such a model provides predictive power; certain types may have particular19

tendencies. This information is valuable, and hence, this problem is worthwhile.20

We contribute by applying machine learning (ML) techniques to personality test data. In particular,21

we rely on clustering algorithms that group “similar” observations. However, more work in this area22

is required since we fail to find reliable evidence for the existence of distinct types.23

2 Related Work24

Gerlach et al. (2018) use Gaussian Mixture Models (GMMs) to identify personality trait clusters. In25

particular, the researchers apply factor analysis to personality test answers. This technique scores26

participants on five personality domains resembling the Big Five traits. However, their method27

provides continuous rather than discrete scores.28

The researchers find initial evidence suggesting thirteen clusters. Upon investigation, however, this29

solution was found to overfit the data. In fact, only four clusters were meaningful. These results imply30

four personality types, which Gerlach et al. (2018) label “average,” “self-centred,” “reserved,” and31

“role-model.” For instance, the self-centred individual is highly extroverted, though low in openness.32

Finally, the authors apply the same approach to three other data sets. Impressively, they obtain nearly33

identical results. These findings are compelling since all four data sets contain more than one hundred34

thousand samples. However, survey data remain prone to various biases.35

1Meaning these traits change little over time.



On the other hand, Sava and Popa (2011) use K-Means Clustering to identify distinct personality36

groups. The researchers find evidence for two solutions, three or five clusters, both revealed to be37

stable via cross-validation. Crucially, response bias may explain these results. Sava and Popa (2011)38

cite related studies which find only three personality types when the data are self-reported. On the39

other hand, observational data reveal additional types. Furthermore, clustering results are sensitive to40

the data’s country of origin. For instance, clusters may be less obvious or fewer in number when the41

surveyed population is “homogeneous.” Finally, the authors propose the five-cluster solution, which42

better explains observed behaviours (e.g., smoking habits). Unfortunately, Sava and Popa’s (2011)43

sample comprises only 1039 participants (Sava and Popa 2011, 366). Given the relatively low quality44

of self-report data, a larger sample size may be preferred.45

Mount et al. (2005) first attempt to define the concept of personality. Interestingly, their definition46

echoes our intuition. In particular, the notion of a personality is meaningful if stable characteristics47

influence actions (Mount et al. 2005, 448).48

The researchers show that personality traits and vocational interests are distinct. More specifically,49

hierarchical clustering reveals three initial interest clusters: enterprising-conventional, realistic-50

investigative, and artistic-social. Similarly, two initial personality trait clusters form: open-extroverted51

and conscientious-stable. However, interests and personality traits merge only during the final step,52

implying that both are largely unrelated. Lastly, their model suggests a three-faceted individual53

determined by social and vocational interests, as well as degree of achievement striving.54

3 Data55

3.1 Overview56

The data were obtained from Open Psychometrics, an online psychology data repository. The fifty57

variables (columns) of interest correspond to fifty personality test questions. Study subjects indicated58

their degree of agreement (1-5) with fifty statements about themselves. For instance, “I am the life of59

the party” (EXT-1). The questionnaire comprises five sections of ten questions each. Each portion60

assesses the strength of a Big Five trait in a participant.61

3.2 Preprocessing and Cleaning62

The survey’s structure provides a natural way to reduce the data’s dimensionality from fifty to five.63

In particular, we sum individuals’ scores from each section; implicitly assuming the validity of the64

widely accepted Big Five taxonomy (Allik and McCrae 2002, 1-3). In truth, fifty dimensions may65

offer a more accurate representation of the data. However, our algorithms may become impractically66

slow due to the sparsity of high-dimensional neighbourhoods (Hastie et al. 2009, 23). Also note that67

the data were not normalized or standardized since all variables lie on the same scale.68

The data set contains 1,015,341 observations (rows). Unfortunately, 1783 observations were missing69

all entries (columns). These examples were removed since imputation is not possible. In fact, mean70

imputation is possible, though unwise, since this procedure distorts the empirical CDF (Houari et al.71

2014, 100).72

Those who recorded the data added an “IPC” variable, indicating the number of records from73

each user’s IP address. For “maximum cleanliness,” the codebook indicated that only entries with74

IPC values of one should be used. Consequently, we removed all other entries, implying 695,70475

remaining data points. Additionally, 1696 observations had zeros in at least one column. Recall that76

all questions are scored from one to five. Accordingly, the minimum value for each column should77

be ten. Upon inspection, we discovered that many of these examples contained several zero entries78

and low scores in all others. We removed these samples since it was unclear what imputation would79

entail. Afterwards, we found 685 entries with at least one score lower than ten. We chose to keep80

these samples since they were not obviously corrupted. However, an argument could be made for81

removing these entries as well. Finally, we proceed with 694,008 observations.82

Lastly, the data type is ordinal for all columns. We assume equal intervals; distances between83

categories are equal. This assumption appears reasonable, though we mention it in the discussion.84
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3.3 Exploratory Analysis85

Here we display interesting data characteristics, and perform initial investigations. First, we obtained86

a random subsample2 of 5 · 104 variates from each trait (each column). Each plot in the matrix below87

provides three density estimates: a histogram, a Gaussian, and a kernel density estimate (KDE). The88

histogram details relative frequencies for the subsample, while the Gaussian was fit via maximum89

likelihood estimation (MLE) over the entire sample. On the other hand, the kernel density was fit to90

the subsample, and the bandwidth determined via Silverman’s heuristic.91
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Figure 1: Distributions of Estimated Big Five Trait Scores

The normality assumption seems reasonable for all five variables. However, all five distributions92

appear lighter-tailed than Gaussian ones. Indeed, this finding suggests that very low or high scores93

are less common than expected from Gaussian data.94

Table 1: Estimated Means and Standard Deviations for Big Five Trait Scores

Variable µ̂ Îµ95 σ̂ Îσ95

Extroversion (E) 30.2 [30.2, 30.2] 3.5 [3.5, 3.5]
Neuroticism (N) 30.4 [30.4, 30.4] 6.5 [6.5, 6.5]
Agreeableness (A) 31.6 [31.6, 31.6] 3.6 [3.6, 3.6]
Conscientiousness (C) 31.3 [31.3, 31.3] 3.9 [3.9, 3.9]
Openness (O) 32.9 [32.9, 32.9] 3.8 [3.8, 3.9]

There is little uncertainty surrounding population parameter estimates. Interestingly, neuroticism95

scores exhibit the highest variance. This finding is significant, though this may be due to the large96

sample size. On the other hand, extroversion exhibits the lowest variance of all trait scores.97

We now apply principal component analysis (PCA) to better visualize the data, and identify potential98

clusters. We obtained the principal components using a (standardized) random subsample of 105 data99

points, and then projected these data onto the resulting eigenvectors. The first two and three principal100

components explain 55%, and 73% of the subsample variance, respectively.101

2Subsampling ensures a scalable approach. Under mild assumptions, sampling from the empirical CDF, F̂X ,
is roughly equivalent to sampling from the true, unknown CDF, FX , by the Gilvenko-Cantelli theorem.
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Figure 2b: Samples in Three-Component Space

Figure 2: PCA Results

There are no obvious clusters; there is only one high-density region in both spaces. Interestingly,102

we notice two groups of (potential) outliers near the boundaries of the data. However, these groups103

contain relatively few samples compared to the main group. Accordingly, we choose to run clustering104

algorithms on the untransformed data.105

4 Analysis and Results106

4.1 K-Means Clustering107

The K-Means Clustering algorithm partitions n data points into K mutually exclusive clusters. Model108

hyperparameters include the number of clusters, K, and the distance function. The former can be109

determined via elbow and silhouette methods. On the other hand, we use the Euclidean distance110

in this analysis. Indeed, this function provides a desirable statistical interpretation: the algorithm111

minimizes within-cluster variances (Hastie et al. 2009, 510).112

We restrict our search for K to the set [1, 20] ⊂ N. We use four different initial cluster assignments113

(seeds) for each value of K. This technique might clarify whether solutions are spurious and114

correspond to local minima.115
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Mean Over All Runs
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Figure 3c

Figure 3: Squared L2 Distance to Centroid as a Function of K

Figure 3a details the average squared distance between points and their corresponding centroids. The116

elbow method suggests choosing the “elbow” of the curve as K. In our case, this technique yields117

largely inconclusive results. Indeed, the curves in figures 3a and 3b lack obvious elbows. On the118

other hand, figure 3c details the gradient3 of the curve. This plot is more informative; notice that the119

gradient appears to “flatten” noticeably for K ≥ 7.120

3The gradient is calculated via second differences for interior points, and first differences at the boundaries.
The documentation for the NumPy gradient() function cites Fornberg (1988).
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Mean Over All Runs

Figure 4: Mean Silhouette Coefficient as a Function of K

The silhouette coefficient measures the degree of cohesion within each cluster, and varies from -1121

(worst) to 1 (optimal). In general, this method is not ideal for massive data given its O(n2) time122

complexity (Petrovic 2006, 10). Notice that the silhouette coefficient drops markedly at K = 2, and123

once more at K = 5.124

Overall, K = 2 and K = 3 appear to be sensible choices for K. We now examine the predicted125

clusters for K = 2 and K = 3 from the first of the four runs. Results are illustrated below.126
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Figure 5a: Group 1
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E N A C O
Personality Dimension

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Sc
or

e

Figure 5b: Group 2

Unconditional Mean

Figure 5: Mean and Standard Deviation Estimates for K = 2
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Figure 6: Mean and Standard Deviation Estimates for K = 3

The table below details estimated centroids.127

Table 2: Centroids for K = 2 and K = 3

K = 2 K = 3
Variable µ̂1 µ̂2 µ̂1 µ̂2 µ̂3

Extroversion (E) 30.2 30.2 30.3 30.3 30.1
Neuroticism (N) 25.1 35.6 22.6 38.0 30.5
Agreeableness (A) 30.9 32.3 30.6 32.8 31.3
Conscientiousness (C) 30.4 32.2 30.1 32.9 31.0
Openness (O) 32.6 33.3 32.7 33.7 32.5

Mixing proportion 0.50 0.50 0.29 0.29 0.42
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First consider the K = 2 solution (left). The algorithm has separated the sample in half. We notice128

that group two is higher in neuroticism, agreeableness and conscientiousness than group one. On the129

other hand, both groups are equal in extroversion, and similar in openness.130

Now consider the K = 3 solution (right). Once again, the clusters appear balanced in terms of131

mixing proportions. Once more, we notice one group (group two) which dominates others in terms of132

neuroticism, agreeableness and conscientiousness. Extroversion does not seem to vary greatly.133

Overall, the difference in neuroticism scores is most salient. Interestingly, we noticed that this variable134

had the largest variance of all features during the exploratory analysis. Strangely, we do not recover135

any of the types proposed by Gerlach et al. (2018) or Sava and Popa (2011). Moreover, we cannot136

test for significant differences in means since this amounts to data snooping; we are more likely to137

find significant differences. However, it may still be useful to analyze various sums of squares. In138

particular, the unconditional variance in the j-th variable can be decomposed as follows:139

1

n

n∑
i=1

(x
(j)
i − µ̂(j))2︸ ︷︷ ︸
TSS(j)

≡ 1

n

n∑
i=1

(x
(j)
i − µ̂

(j)
C(i)

)2︸ ︷︷ ︸
WSS(j)

+
1

n

n∑
i=1

(µ̂
(j)
C(i)

− µ̂(j))2︸ ︷︷ ︸
BSS(j)

The proof is given in the appendix. Here, µ̂(j)
C(i)

denotes the estimated mean of the j-th variable140

in the cluster corresponding to observation i, C(i). Let R(j) = WSS(j)/TSS(j) and denote by R̄141

the average of R(j) over all five variables. If R(j) is large,4 then the clusters do not account for a142

significant portion of the variance in the j-th variable. On the other hand, R̄ illustrates how much143

variance is accounted for by the clusters, on average. Crucially, we find that R̄K=2 = 0.85, and144

R̄K=3 = 0.81. As suspected, the clusters do not account for much variation in the observed data.145

In the next section, we employ a probabilistic, parametric clustering algorithm. Unlike the non-146

parametric technique explored above, the following algorithm may provide greater interpretability.147

4.2 Gaussian Mixture Model148

A K-component Gaussian Mixture Model (GMM) assumes the data originate from a mixture of
K Gaussian distributions. Expectation Maximization (EM) is a common method to estimate these
models. Crucially, EM is a “soft” K-Means algorithm, which calculates posterior, class membership
probabilities for each data point (Hastie et al. 2009, 512). The hyperparameter K can be selected via
the Bayesian Information Criterion (BIC), the formula for which is given below.

BIC ≡ p · ln(n)− 2 · l(θ∗)

Here, l(θ∗) denotes the value of the log-likelihood function at the optimal parameter vector θ∗,149

and p, n denote the number of parameters and samples, respectively. Lower BIC values indicate a150

parsimonious fit. Notice that the model is increasingly penalized for large p as n increases.151

We return to our search for K in the set [1, 20] ⊂ N. Once again, we use four different random152

starting points for each K. Results are found below.153
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Figure 7: BIC as a Function of K

4The goal is not to minimize this quantity. Indeed, the ratio becomes zero if we create a cluster for each data
point.
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Notice that the curves in figures 7a and 7b lack evident elbows. Figure 7c details the BIC gradient;154

the change in BIC becomes insignificant for K ≥ 7. Once again, K = 2 and K = 3 are arguably the155

most reasonable choices for K.156
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Figure 8: Mean and Standard Deviation Estimates for K = 2
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Figure 9: Mean and Standard Deviation Estimates for K = 3

The parameter estimates are given in the table below.157

Table 3: Parameter Estimates for K = 2 and K = 3

K = 2 K = 3
Variable µ̂1 µ̂2 µ̂1 µ̂2 µ̂3

Extroversion (E) 30.3 30.2 30.4 23.4 30.1
Neuroticism (N) 31.8 30.3 32.3 23.1 29.4
Agreeableness (A) 30.5 31.6 31.7 23.2 31.2
Conscientiousness (C) 30.3 31.3 31.6 23.1 31.2
Openness (O) 29.2 33.0 32.6 22.4 33.2

Mixing proportion 0.02 0.98 0.34 ≈ 0.00 0.66

Consider the K = 2 solution. Unlike the K-Means clusters, these classes are severely imbalanced.158

In particular, only 2% of the sample was assigned to group one. Notice that the between-cluster159

variance in personality trait scores is marginal. Unfortunately, there is no obvious interpretation for160

these findings.161

Crucially, convergence to a local minimum is unlikely to be the cause of these results. Indeed, we162

repeated the analysis for K = 2 ten times using different starting points. All runs yielded nearly163

identical estimates.164

The K = 3 solution is likewise incredible. Notice that nearly 0% of the sample was assigned to group165

two. This group comprises 2480 members, whose trait scores are far below average (on average).166

Moreover, trait scores appear highly variable across individuals within this class.167

Here we find that R̄K=2 ≈ 1, and R̄K=3 = 0.97. As suspected, the clusters do not account for much168

variation in the data. It remains unclear why we obtained these results. GMMs are relatively flexible169

since clusters may be “stretched” or “compressed” by the variance-covariance matrix. We expected170

GMMs to yield better results than the K-Means algorithm. In fact, the opposite appears to be true for171

these data.172

7



5 Discussion173

We begin by discussing the data and potential sources of bias. Recall that the data were obtained174

from an online self-report survey. First, individuals uninterested in online surveys are excluded from175

this sample (selection bias). This bias may lead us to underestimate the number of clusters, since176

certain personality types may avoid surveys.177

Next, participants may only provide socially acceptable answers, or ones that support their self-images178

(response/self-serving bias). For instance, individuals may not want to admit that they “shirk their179

duties” (CSN-8).180

Finally, participants may only give extreme or neutral responses. In the former case, responses181

become caricatures of participants. In the latter case, data become equally distorted. This bias may182

inflate or decrease variances, depending on the tendencies of surveyed individuals. For example, we183

would underestimate the variance of all variables if most individuals provided deceivingly neutral184

responses.185

Fortunately, the sample size is large. It seems reasonable to assume that a considerable portion of the186

data is representative of the global population. Indeed, individuals from 223 countries participated in187

the survey. The global nature of the survey may lessen the effect of culture-specific biases. Moreover,188

this fact somewhat mitigates the effect of culture on the number of clusters (Section 2).189

We now discuss our methods. First, recall that we assumed equal intervals; we treated ordinal data190

as continuous. The aforementioned extreme response bias affects the soundness of this assumption.191

For instance, a subject may interpret scores 2 and 3 as “closer” than 1 and 2. If true, the intervals192

are no longer equal, and the assumption is unwarranted. However, it is impossible to know whether193

participants understood the survey this way. On the other hand, models exist to handle ordinal data;194

applying these techniques to this data set constitutes a possible extension.195

Next, we only considered two algorithms: K-Means Clustering and GMMs. Other algorithms196

and techniques exist, for instance, hierarchical or density-based clustering. However, we sought197

to investigate the existence of distinct personality types. Indeed, partitional clustering is entirely198

appropriate for this task.199

6 Conclusion200

We find mixed results; most of our procedures to determine K were inconclusive. However, K = 2201

and K = 3 appeared to be the most reasonable choices for the number of clusters. Unfortunately, the202

clusters for K = 2 and K = 3 proved unconvincing upon inspection. Indeed, these clusters did not203

account for a significant portion of the variation in the observed data. As noted in the discussion, this204

may suggest biased data rather than the non-existence of personality types.205

Unlike Gerlach et al. (2018), we obtained especially poor results from GMMs. Indeed, the K-Means206

algorithm provided more interpretable results. In general, the latter technique is more suitable for207

high-dimensional, large data since GMMs involve O(d3) matrix inversion (Pinto and Engel 2015),208

where d denotes the number of variables.209

In summary, we fail to find convincing evidence for the existence of distinct personality types.210

However, absence of evidence should not be confused with evidence of absence. In particular, more211

research is required to draw a definite conclusion. Possible extensions include repeating the analysis212

on other data sets, and using observational rather than self-report data. As mentioned in the discussion,213

exploring other clustering algorithms may also be worthwhile.214
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Appendix244

Variance Decomposition Proof245

Consider a random variable X(j) with corresponding distribution function F (j). Let x(j)
i denote the246

i-th realization of X(j). Let µ̂(j) denote the sample mean of variates drawn from F (j). Suppose247

that xi is assigned to cluster C(i), and let µ̂(j)
C(i)

denote the mean of points in C(i). We claim that the248

following equation balances:249

n∑
i=1

(x
(j)
i − µ̂(j))2︸ ︷︷ ︸
TSS(j)

≡
n∑

i=1

(x
(j)
i − µ̂

(j)
C(i)

)2︸ ︷︷ ︸
WSS(j)

+

n∑
i=1

(µ̂
(j)
C(i)

− µ̂(j))2︸ ︷︷ ︸
BSS(j)

Proof. Consider TSS(j):250

n∑
i=1

(x
(j)
i − µ̂(j))2 =

n∑
i=1

(x
(j)
i − µ̂

(j)
C(i)

+ µ̂
(j)
C(i)

− µ̂(j))2 =

n∑
i=1

((x
(j)
i − µ̂

(j)
C(i)

) + (µ̂
(j)
C(i)

− µ̂(j)))2

Expanding the quadratic, we obtain:251

=

n∑
i=1

(x
(j)
i − µ̂

(j)
C(i)

)2 +

n∑
i=1

(µ̂
(j)
C(i)

− µ̂(j))2 + 2

n∑
i=1

(x
(j)
i − µ̂

(j)
C(i)

)(µ̂
(j)
C(i)

− µ̂(j))

We switch to more convenient notation. Suppose that C(k) denotes the k-th cluster, where k ∈252

[1, K] ⊆ N. A point xi is assigned to cluster k if and only if i ∈ C(k).253

=

n∑
i=1

(x
(j)
i − µ̂

(j)
C(i)

)2 +

n∑
i=1

(µ̂
(j)
C(i)

− µ̂(j))2 + 2

K∑
k=1

(µ̂
(j)
C(k)

− µ̂(j))
∑

i∈C(k)

(x
(j)
i − µ̂

(j)
C(k)

)

Rewriting the rightmost term:254

=
n∑

i=1

(x
(j)
i − µ̂

(j)
C(i)

)2 +

n∑
i=1

(µ̂
(j)
C(i)

− µ̂(j))2 + 2

K∑
k=1

(µ̂
(j)
C(k)

− µ̂(j))[
∑

i∈C(k)

(x
(j)
i )− |C(k)| · µ̂

(j)
C(k)

]

=

n∑
i=1

(x
(j)
i − µ̂

(j)
C(i)

)2 +

n∑
i=1

(µ̂
(j)
C(i)

− µ̂(j))2 + 2

K∑
k=1

(µ̂
(j)
C(k)

− µ̂(j))(|C(k)| · µ̂
(j)
C(k)

− |C(k)| · µ̂
(j)
C(k)

)

Indeed, the rightmost term vanishes:255

=

n∑
i=1

(x
(j)
i − µ̂

(j)
C(i)

)2 +

n∑
i=1

(µ̂
(j)
C(i) − µ̂(j))2

256

Variance decompositions like the one above are common in statistics. This demonstration is nothing257

novel.258
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