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DO FEEDFORWARD, DENSE NEURAL NETWORKS PREDICT A
COUNTRY’S OBESITY PREVALENCE MORE ACCURATELY THAN
ADDITIVE MODELS?

BY EDRIC SVARTE '

1University of Waterloo, esvarteb@uwaterloo.ca

We propose a model that predicts a nation’s obesity prevalence. We com-
pare the predictive performance of two model classes: neural networks and
additive models. Implications and possible extensions are briefly discussed.

1. Introduction. Obesity is a pressing public health issue. An individual is obese if his
BMI exceeds thirty! (Ritchie and Roser, 2017). A country’s obesity prevalence is the per-
centage of adults who are obese (but not overweight). A predictive model of obesity would
allow policymakers and health professionals to assess which countries are at risk of an obe-
sity epidemic. Within this context, we compare the predictive performance of additive mod-
els (AMs) and feedforward, dense neural networks (NNs). Feedforward suggests data only
travel forward: from input to output layer. Dense implies that neurons in adjacent layers are
fully-connected pairwise.

Additive models are a class of flexible yet interpretable models. Despite their attractive-
ness, data scientists and machine learning engineers neglect AMs (Larsen, 2015). These prac-
titioners prefer neural networks. These models have an impressive ability to “learn” com-
plex relationships between variables. Unfortunately, these models are notoriously difficult to
“train” (Nielsen, 2015), and generally uninterpretable. Indeed, NNs are often unfit for use in
business and medicine (Agarwal et al., 2021).

In summary, we examine which model class more accurately predicts a nation’s obesity
prevalence. A model is accurate if its prediction error is relatively low.

1.1. Related Literature. Most of the literature on our current topic compares the perfor-
mance of NNs to generalized additive models (GAMs). For instance, Zhou and Zhang (2022)
attempt to predict the impact resistance of X80 pipelines. The authors propose a dense NN
with three neurons, and one hidden layer. Unfortunately, this is an elementary neural net-
work. Despite having only five input variables, it may be valuable to experiment with much
deeper, wider networks. Finally, the authors show that the chosen NN is roughly three times
as accurate as the chosen GAM.

Similarly, Papoila et al. (2013) compare GAMs, NNs and GLMs. The authors wish to
predict the survival probability of critically ill hospital patients. Crucially, these classifiers’
must be calibrated. For instance, suppose a model predicts that a patient has a 70% chance
of survival. This patient should survive seven times out of ten if the model is calibrated.
Unfortunately, modern neural networks tend to be poorly calibrated (Guo et al., 2017). Inter-
estingly, Papoila et al. (2013) obtain similar results. In particular, they find that GAMs are
better calibrated than NNs and GLMs. Fortunately, modern techniques, such as temperature
scaling, can improve NN calibration. This process involves dividing predicted logits by a
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I'Some countries may define obesity otherwise. However, we use the WHO definition to be consistent with
those who collected the data.

%Functions that handle categorical target variables. In this case, whether a patient will survive.
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learned parameter. This simple method reduces NN overconfidence; the tendency to assign a
large probability to the incorrect class (Guo et al., 2017).

On the other hand, Agarwal et al. (2021) propose a class of “glass-box” models: neural
additive models (NAMs). Intriguingly, each input variable has its own neural network. These
NNs are independent but are trained together. Finally, outputs are combined as in a GAM.
The authors find that NAMs are nearly as accurate as NNs, though NAMs provide intelligible
results. This approach seems promising.

2. Data.

2.1. Sources and Exploratory Analysis. All data are from ourworldindata.com, an online
data repository. We combined four data sets from this source (all from 2013). The first data
set provides the target variable: the obesity prevalence in 202 countries (Ritchie and Roser,
2017). The second provides four covariates, and details mean daily per capita calorie intake
by macronutrient® in 173 countries (Ritchie, Rosado and Roser, 2017). The third details the
average per capita daily calorie intake by food group* in 170 countries (Ritchie, Rosado and
Roser, 2017). However, only one column (variable) was of interest: alcohol intake. Finally,
the last data set details the per capita GDP of 183 countries (Roser, 2013). All four data sets
were merged, resulting in a sample of n = 159 observations. There was one missing value:
the mean daily alcohol intake in the United Arab Emirates (UAE). This data point (country)
was removed. We proceed with a sample of n = 158 observations.

As stated, the obesity prevalence is the continuous target variable. The remaining six vari-
ables are continuous predictors. We perform a sample-split before attempting any sort of
analysis. We create a training set, 7, and a hold-out test set, H (80/20 split). The test set
will not be used for exploratory analysis or model selection. Indeed, H has a single purpose,
which we describe in the next section (3.1).

The mean obesity prevalence was found to be i = 17. That is, 17% of individuals are
obese in a typical country. A 95% double-bootstrap confidence interval for the true mean is
given by I J= = [15.4, 18.5]; there is little uncertainty surrounding the estimate of the mean.
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FIGURE 1. A Non-Linear Relationship in the Training Data

3Macronutrients include carbohydrates, fats, and protein. Protein is further separated by source: plant or ani-
mal. Hence there are four variables.

4For instance, dairy and eggs, pulses, starchy roots.
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The plot above shows the obesity prevalence as a function of the per capita, real GDP.
Clearly, the relationship is not linear on the entire domain. The other five variables likewise
have non-linear relationships with the target; hence the need for flexible models.

3. Methods.

3.1. Outline. The analysis has two stages. In stage one (sections 4.1, 4.2), we build and
evaluate several AMs and NNs (separately). We evaluate models on 7 using five-fold cross-
validation, repeated ten times to stabilize the results. K = 5 is less computationally intensive
than K = 10 or LOOCYV; it is not feasible to fit a neural network n times per CV repetition. At
the end of stage one, we use the CV results to select one AM and one NN. An optimal model
is one that minimizes the cross-validation error, M .S P E¢y . However, parsimony (simplicity)
is also a consideration. In stage two (section 4.3), we use the two chosen models to make a
final prediction using the test set features. We then compare the results.

3.2. Neural Networks. Here we do not perform variable selection. However, we must
select hyperparameters. We detail our process below.

We use a grid search to find a locally optimal width/depth combination. A heuristic pro-
vides the grid upper bound for the width, w: the number of neurons should be (roughly)
less than twice the input dimension (Ke and Liu, 2008). Selecting the depth, d, is more
complicated, though two hidden layers suffice for most purposes.” However, we choose to
experiment with every combination of width and depth from the sets w = {2, 4, 8, 16}, and

d=1{1, 2, 4}.
Next, we use two methods to prevent overfitting. First, we use Lo regularization: we
choose the regularization parameter from the set A\, = 107%, k = [—4, 3] C Z which mini-

mizes M SPFE¢y . Second, CV will reveal any overfit models. Note that we test A values and
the different width/depth combinations simultaneously (a 3D grid search). There are hence
n(w) -n(d)-n(A\) =4-3 -8 =96 neural networks to evaluate. Lastly, the number of epochs
must be chosen to balance bias and variance. We choose to vary the number of epochs until
MSPEcy stops decreasing.

Next, we attempt to accelerate training. First, we standardize input batches (subsets of 7")
after every dense layer, before passing them to the activation function. We use a batch size
of twenty-two since small batch sizes may improve generalization (Oyedotun, Papadopoulos
and Aouada, 2022). Next, we use the ReLU activation function to enhance computational
efficiency.® Lastly, we use stochastic gradient descent (SGD) to minimize the squared loss
function. Note that we begin with a learning rate of 0.001 and divide it by ten every fifty
epochs to avoid missing minima.

We use “early-stopping” to train the final NN after choosing hyperparameters. In partic-
ular, we split the training set, 7, into a smaller training set, Tasrn7, and a validation set, V
(70/30 split). We train the model on Ty until the error on V stops decreasing. This tech-
nique yields acceptable results despite being slightly crude (Lodwich, Rangoni and Breuel,
2009).

3.3. Additive Models. Here we have a variable selection problem, which we solve using
a type of backward elimination. We begin with a model with all six predictors, and evaluate
it via CV. We then remove variables one-by-one, and select the (five-variable) model that

>Since these networks can generate functions which are dense in the set of continuous functions mapping X
to Y (Stathakis, 2009).

The ReLU’s derivative is either zero or one, hence simple to calculate.
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minimizes M.SPEcy . We continue this greedy search until one variable remains (the stop-
ping rule). Crucially, we remove one variable at each step even if doing so does not decrease
MSPEc¢y. This design allows us to explore more of the search space, and may help us over-
come local minima. Hence each step yields a (locally) optimal model for a given number of
variables. We then choose one of six models; the one which minimizes M SPFE¢y .

Next, we select hyperparameters. Fortunately, the gam() function from the MGCV pack-
age optimizes these values via generalized CV. We let this function choose the number and
placement of knots, as well as the regularization parameters.

4. Results.

4.1. Optimal Neural Network. The table below details M SPFE¢cy values for various
NNs, given an optimal tuning parameter, A*, and an optimal number of epochs, E*.

TABLE 1
Neural Network Cross-Validation Results
Width (w)
Depth (d) 2 4 8 16
1 554 540 551 557
2 352 345 341 348
4 373 370 377 377

It seems that two hidden layers minimizes CV error. In particular, the NN with w =
8, d =2 achieved the lowest error: M SPFE¢cy = 34.1. Similarly, the NN with w =4, d =2
achieved an error of M SPFE¢cy = 34.5. However, the former is significantly more compli-
cated than the latter (137 vs. 53 parameters). We apply the parsimony principle, and deem
w* =4, d* = 2 the optimal width/depth combination. This model’s error was minimized by
training for £* = 250 epochs on each fold, and A* = 10.

Next, we trained the optimal NN on 73,7 7. The validation error stopped decreasing after
FE = 40 epochs. We now train the chosen neural network on 7 with £* = 40 epochs, and
report the results in section 4.3.

4.2. Optimal Additive Model. The table below details M .S P E¢cy values for the optimal
AM at each step of the greedy search (the algorithm proceeds from top to bottom).

TABLE 2
Additive Model Cross-Validation Results
Variables Included
Model FatCals CarbsCals AnimalProCals PlantProCals AlcoholCals GDP MSPE
1 1 1 1 1 1 1 37.4
2 1 1 1 0 1 1 36.6
3 1 1 0 0 1 1 34.0
4 1 1 0 0 1 0 35.8
5 1 1 0 0 0 0 345
6 0 1 0 0 0 0 36.2

Model 3 and 5 minimize M SPE¢y. However, model 5 includes two variables, while
model 3 includes four. We apply the parsimony principle and select model 5.
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4.3. Optimal Model. We used the features from the hold-out test set to make a fi-
nal prediction. Using the chosen NN, we find that M SPErgst ~ 41 and fé\g SPErest —
[22.1, 72.9]. Hence the model is imprecise; the error magnitude is quite variable. On the
other hand, the chosen AM’s error was found to be M SPErpsr ~ 19, with corresponding
interval estimate fé\g SPErpsr — [10.4, 35.2]. Thus the AM is more than twice as accurate as
the NN. Moreover, there is less uncertainty surrounding this estimate. Based on these results,
we propose an additive model. Recall that this model has two predictors, namely the mean
daily consumption of fats and carbohydrates. We explore this model in the next section.

4.4. Interpretation. Here we examine one of the model’s smooth functions.
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FIGURE 2. Marginal Effect of Carbohydrate Intake on Obesity Prevalence

Note that fo4rp is equal to zero at the mean daily carbohydrate intake (roughly 1750 calo-
ries). Interestingly, this function is convex: carbohydrate intake has an increasing marginal
effect on the rate of obesity. Suppose a nation’s citizens consume an average of 1750 carbo-
hydrate calories a day. This country’s obesity prevalence should rise by roughly four percent
should consumption increase to 2200 calories.

5. Conclusion.

5.1. Discussion. First, all data are from 2013, and thus may be unrepresentative of the
world today. For instance, GDP per capita tends to increase over time (Roser, 2013). More-
over, the joint distribution of the variables may have changed. However, future research may
use these results as a starting point.

Next, we discuss a surprising finding: AMs outperformed NNs. Crucially, this result is
likely due to “user error,” and the inherent challenges of non-convex optimization. For in-
stance, we used relatively simple and crude methods to select hyperparameters. Indeed, the
analysis could be repeated using different techniques. For example, dropout could replace Lo
regularization, and the learning rate could cycle rather than decay.

Similarly, our AM selection strategy has its limitations. For example, we used a greedy
algorithm to select features, and thus tried a fraction of all possible covariate subsets. Fur-
thermore, we did not consider variable interactions. Perhaps the association between obesity
and fat intake depends on real GDP. However, we appreciate AMs for their interpretability.
Indeed, interactions may be tough to comprehend for those not well-versed in statistics or
mathematics. On the other hand, modelling these interactions constitutes a possible exten-
sion. Despite these limitations, we obtained satisfactory results.



We should also mention that CV does not estimate a model’s prediction error, but rather
the generalization error averaged across all training sets. However, CV may still be useful in
comparing models (Bates, Hastie and Tibshirani, 2023, 3).

We now briefly mention model assumptions. It is unclear whether the additivity and
smoothness assumptions hold. As mentioned, however, these assumptions ensure inter-
pretability and simplicity. We performed a brief residual analysis. The residuals do seem
randomly scattered about the zero line. Next, both the Fligner-Killeen and Levene tests were
non-significant. The normality assumption may be violated. For instance, both the Shapiro-
Wilk and Jarque-Bera tests were significant, though the Anderson-Darling test was not.

Lastly, the proposed model should be tested on a new, independent test set. Indeed, we
used our test set, H, to compare the optimal NN to the optimal AM. In fact, the test set
should only be used to provide a final estimate of the selected model’s generalization error.
However, the principal goal of this study was to compare two model classes. Our use of the
test set was appropriate given this objective.

5.2. Conclusion. We used five-fold cross-validation, repeated ten times, to select one ad-
ditive model and one neural network. Next, the predictive performance of both models was
assessed on a holdout test set, H, with n = 32 observations. We found that M SPEnn ~ 41
and MSPE sy ~ 19. The AM was found to be more precise and accurate than the NN. On
average, the AM mistakenly predicts the obesity rate by roughly 4.4%. This model includes
two covariates: the mean daily per capita consumption of fats and carbohydrates. We predict
that countries whose inhabitants consume large amounts of these macronutrients will have
higher rates of obesity. This finding has implications for health professionals and policymak-
ers alike.
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