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Abstract

Additive models may be estimated via splines, or neural networks. We evaluate the predictive
accuracy and fit of both techniques through a simulation study. Results suggest that both
methods are equally effective, though splines are easier and faster to train.

1 Introduction

Interpretable machine learning (ML) continues to attract practitioners, regulators and stakeholders
seeking transparent and trustworthy models (Murdoch et al.|2019, 1). A model is interpretable if the
process governing predictions is easily understood. This property is highly desirable in high-stakes
fields such as medicine or finance (Agarwal et al. 2021, 1).

Neural networks (NNs) have an exceptional ability to “learn” complex relationships between vari-
ables. Unfortunately, NNs are not interpretable since the parameters have no intuitive meaning,
and the marginal effect of each predictor is generally unclear (Murdoch et al.[2019, 3). Conversely,
linear models are interpretable, though highly inflexible. Some alternatives strike a balance, such
as generalized additive models (GAMs). Rather than imposing the restrictive linearity assumption,
these models assume additivity and smoothness: the marginal effect of each covariate is given by a
smooth, univariate function (Hastie et al.[2009, 257).

GAMs are typically estimated via spline basis functions (SAMs). However, |Agarwal et al.| (2021))
propose neural additive models (NAMs), in which each covariate has its own NN. These NNs do
not interact until their scalar outputs are summed (as in a typical additive model).

Unfortunately, it remains unclear whether NAMs offer significant improvements over SAMs. For
instance, fitting a NAM requires the computationally costly training of a NN. On the other hand,
the SAM objective function is a simple quadratic form (Hastie et al.[2009, 128).

We compare the predictive accuracy and fit of SAMs to NAMs through a simulation study. In
particular, we examine the effect of sample size and model assumption violations. In this context, a
model is accurate if its prediction error is relatively low, and precise if errors are not highly variable.

2 Related Work

What are the advantages of NAMs? [Agarwal et al| (2021)) claim that NAMs can capture jumps
or discontinuities in the individual “feature” functions. However, SAMs can capture mild jumps
through hyperparameter tuning. For instance, the number of knots may be increased. Or, the
curvature penalty may be reduced by adjusting relevant parameters (Hastie et al.[2009} 117).



Zschech et al| (2022)) compare various additive model estimation techniques, including splines
(SAMs), neural networks (NAMs), and decision trees. Moreover, the researchers compare these
(interpretable) models to well-known black-box methods. Crucially, they find a marginal perfor-
mance gap between the best models of both groups. [Zschech et al.| (2022) find that SAMs provide
the most interpretable results. However, the smoothness assumption may be too restrictive in the
presence of jumps or thresholds. On the other hand, they find that NAMs can capture jumps,
though they tend to overfit. Interestingly, the NAMs underperformed the SAMs on all twelve
datasets, and required roughly one hundred times the training time.

3 Simulation Study

This section details a comparative analysis of SAMs and NAMs. In particular, we use simulation
techniques to create data of the form: y = f(z)+e. In this supervised setting, the goal is to recover
f(z) from the observed, noisy data.

Models M;; = (M7, MFAM) are fit to training set 7;;, where ij denotes repetition j of experi-
ment 7. We perform five experiments of one hundred repetitions each. Different training sets within

the same experiment are identical in distribution, i.e., Ty, = Ty Vi € [1, 5] C N, Vk,1 € [1, 100] C N.

Predictive performance of ./\/lfjAM and ./\/lf-}’AM is scored via mean-squared prediction error (MSPE)

on a hold-out test set, H;;, where Hy; 2 Ty, |Hij| = 50 Vi, j.

For each experiment i, we report the mean MSPE across all repetitions, j. Furthermore, we test
for significant differences in predictive accuracy between SAMs and NAMs via double-bootstrap
confidence intervals. We do the same for the R? value, and provide plots of M;;’s fitted functions.

SAMs were fit using the gam() function from the MGCV package in R, which uses generalized
cross-validation (GCV) to optimize the number of knots, and the penalty term hyperparameters.
On the other hand, NAMs were fit using the PyTorch module in Python.

NAM architecture varied according to experiment conditions. However, we briefly specify which
elements remained constant. First, recall that each feature in a NAM has its own neural network.
We removed the bias term from the last linear layer of each feature’s network for identification.
However, an intercept (bias) was added to the sum of all network outputs. Network architecture
did not vary across features. We chose the tanh activation function, and did not apply normalization
techniques.

Due to the challenges in automating neural network training, it was initially unclear how to repeat
experiment ¢ multiple times. We approached this problem by using 7;; to “manually” determine
appropriate hyperparameters for MY4M. More specifically, we split 7;; into a smaller training set,
T, and a validation set, V;1, where T;; = 71 U V;; and |7;}| = 0.8 - |T;1|. This sample split allowed
us to use implicit regularization: early stopping. We then used these optimized tuning parameters
for the remaining models on the remaining training sets (including MN4M which was re-trained

on T;1). This procedure assumes that suitable hyperparameters for MY4M are likewise appropriate

for /\/lf-}[AM Vj. We review this technique in the .

3.1 Experiment 1 - Baseline Conditions

We begin by obtaining a performance baseline, and seek to recover the following function:

f(@) = fi(z1) + fa(z2) = 27 + sin(4z2)



The observed data are given by y = f(z) +¢, € £ N(0, 0.01), where n = 100 inputs are drawn

from a U[—1, 1] distribution for both z; and x5 (|7;;| = 100 Vj). All model assumptions are
satisfied, including additivity, smoothness, homoskedasticity, and independence. displays
the estimated functions/[]

f=x2 fo = sin(4xz)

Figure 1: Fitted Functions Under Baseline Conditions

The SAM (pink) and the NAM (orange) nearly perfectly recover the oracles. However, we notice
some minor divergence from the true functions near the boundaries of the observed data.

Table 1: Experiment 1 Results

Model MSPE 1)SPE R? s
SAM  0.0115 [0.0112, 0.0120] 0.98 [0.98, 0.98]
NAM  0.0115 [0.0112, 0.0120] 0.98 [0.98, 0.98]

Table 1] details simulation results] Remarkably, the estimates are almost identical. There is no
evidence that the true MSPEs differ, and both models appear similarly precise since the intervals
are roughly equal in width. Also notice that both models consistently fit the data quite well.

We briefly detail the NAMs, which were trained for 1000 epochs. Each feature function was esti-
mated using a NN with one hidden layer, and four hidden units. We used vy = 0.02 as the initial
learning rate, and decreased it to 7, = 0.004 after 750 epochs. Momentum of # = 0.9 was used.

3.2 Experiment 2 - Ideal Conditions

Here we seek to learn f(z) from [experiment one, though we increase the sample size to n = 1000.
The target’s distribution is unchanged, hence we reuse the test sets from experiment one| (H1; =

Haj Vj).

TAll SAMs were point-constrained such that f(0) = 0, and all marginal functions shifted so that E[f] = 0. Also
note that all plotted NAMs are those trained on 7}, and not 7;; (i.e., before re-training).

2MSPE denotes the mean MSPE over all one hundred test sets. Similarly, [2SPF denotes the 95% confidence
interval for the true, but unknown MSPE.
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Figure 2: Fitted Functions Under Ideal Conditions

shows that both methods recover f; and fy. Also notice that the fit has improved near
the boundaries; a phenomenon likely due to the tenfold increase in sample size.

Table 2: Experiment 2 Results

Model MSPE — IMSFE  R? 1
SAM  0.01  [0.01, 0.01] 0.98 [0.98, 0.98]
NAM  0.01  [0.01, 0.02] 0.98 [0.95, 0.98]

Once again, there is no difference in predictive accuracy or fit. Interestingly, the SAM MSPE
interval is narrower than the one from the [previous experimentl On the other hand, the NAM
MSPE interval has widened significantly. The latter result is strange, since an abundance of data
should reduce uncertainty surrounding point estimates.

These NAMs were trained for 600 epochs and share architecture, initial learning rate and momentum
with their experiment one counterparts. However, we decreased the learning rate by a factor of ten
every 200 epochs.

3.3 Experiment 3 - Asymmetric Errors

Once again, we aim to recover f(z) using n = 100 data points (|73;| = 100 Vj). However, we now
consider a new scenario: asymmetric errors. This phenomenonﬂ is not uncommon with real data,
and hence is of particular interest. The error term is distributed as follows:

e+1"0T (k=2 0=05)

The distribution has been shifted so that E[e | X] =k — 1 = 2(0.5) — 1 = 0. Thus the mean error
remains zero, though the skewness is given by us = \% = \% = /2 ~ 1.41. In other words, there

are many small errors about zero, and few, large, positive errors. Now, consider [figure 3|

3For instance, [Ramirez and Fadigal (2003) forecast grain prices via GARCH models with asymmetric errors.
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Figure 3: Fitted Functions with Asymmetric Errors

Neither the SAM nor the NAM entirely recovers the oracles. Overall, the f; estimates appear
“worse” than the f; estimates. Arguably, 25 AMs i g hetter fit than I AMs gince the former appears

more “aligned” with fs.

Table 3: Experiment 3 Results

Model MSPE — IMSPE  R? 1
SAM  0.59  [0.56, 0.63] 0.55 [0.53, 0.56]
NAM  0.60 [0.57, 0.63] 0.53 [0.51, 0.55]

The R? values have decreased significantly from experiments and[twol However, these results are
not particularly disconcerting. Indeed, a residual plot reveals an obvious abnormality, prompting
us to apply different techniques. Notice that the difference in MSPE remains insignificant, and
precision is once again similar.

Each feature’s marginal effect was estimated using a NN with one hidden layer, and four hidden
units. The NAMs were trained for 300 epochs using momentum of 5 = 0.9, and an initial learning
rate of 79 = 0.01. This last hyperparameter was decreased to v; = 0.005 after 150 epochs.

3.4 Experiment 4 - Smoothness Violation

We now attempt to learn a different function: g(z) = g1(z1) + g2(22) = g1(z1) + sin(4x,).

() x? ifx>0
x =
st r1+1 ifxr<0

Once more, n = 100 inputs are drawn from a U[—1, 1] distribution (|74;| = 100 V7). Similarly,

noise is given by ¢ 0N (0, 0.01). Notice that the SAM smoothness assumption is violated since
g1 is discontinuous at z; = 0. details the marginal functions.

The fitted functions do not entirely capture g; at the discontinuity. That being said, fls AMi and

1N AMs appear to be decent, smooth approximations to a discontinuous function. Indeed, the fitted
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Figure 4: Fitted Functions Under Smoothness Violation

curves predict a sharp decrease at x; &~ 0. We might expect the fit to worsen as the size (vertical
gap) of the discontinuity increases. Interestingly, the violation affects only the fit of g;. Indeed, the
SAM and the NAM appear to recover g9, suggesting that one variable may violate the smoothness
assumption without compromising the entire model.

Table 4: Experiment 4 Results

Model MSPE 1MSPE R? s
SAM  0.026 [0.024, 0.028] 0.96 [0.96, 0.97]
NAM  0.036 [0.032, 0.043] 0.94 [0.93, 0.95]

Interestingly, the difference in MSPE and R? is significant. Indeed, the SAMs appear more accurate,
and marginally more precise. These findings are bizarre, given that SAMs assume that underlying
functions are smooth. On the other hand, NAMSs are claimed to be robust to such violations. It is
unclear whether these results are practically significant. In fact, more work is needed to establish
the superiority of SAMs under these conditions.

The NAMs were trained for 600 epochs. Each feature function was estimated via a NN with one
hidden layer, and four hidden units. The learning rate was set to 7y = 0.02, and reduced by a factor
of 1.5 after 400 epochs. Momentum of 5 = 0.9 was used, as well as Ly penalization with A = 0.001.

3.5 Experiment 5 - Misspecification
Finally, we seek to recover the following function:
h(z) = hi(z1) + ho(22) + ha(x1, ) = 2] + sin(4wy) + 117,

The additivity assumption has been violated since hg represents an interaction between the variables
x1 and x9. Consequently, this experiment evaluates the effect of model misspecification. Adding an
interaction term at the cost of interpretability would solve the issue. Note that plots are omitted
since h(x) cannot be decomposed into the sum of two univariate functions.



Table 5: Experiment 5 Results

Model MSPE [MSPE R? Ir
SAM  0.142  [0.135, 0.151] 0.846 [0.838, 0.852]
NAM  0.137  [0.130, 0.144] 0.833 [0.825, 0.839)

Fit and predictive accuracy appear worse than [baselinel However, there is no significant difference
in MSPE or R?. Once more, the MSPE intervals are similar in width, suggesting equal precision.

We required more expressive NAMs for this experiment. In particular, we estimated the effect of
each variable using a NN with two hidden layers, and eight hidden units; implying a total of 193
parameters. Models were trained for 250 epochs using an initial learning rate of vy = 0.01, though
this parameter was decreased to vy; = 0.001 after 200 epochs. Momentum of 5 = 0.9 was used,
alongside Ly penalization with A = 0.0055.

3.6 Summary of Experimental Results

We briefly summarize the findings of section 3, The SAM MSPE point estimates were marginally
lower than the NAM estimates in experiments and [four] However, only [experiment four]
yielded significant results. Be that as it may, we were skeptical to accept these findings for reasons
mentioned in the [discussion] We found these results strange since we expected the more flexible
NAMs to dominate. Indeed, recall that SAMs use B-spline basis functions to approximate targets.
These basis functions have desirable properties, for instance, local contro]ﬁ and hence robustness
to outliers. However, this approach remains limited since the data cannot suggest an appropriate
choice of basis. On the other hand, NAMs leverage (dense) NNs, which, roughly speaking, learn
optimal basis functions. We initially conjectured that the latter approach would be superior when
model assumptions were violated.

Overall, accuracy and fit were best in lexperiment two| (large sample and no violations). Conversely,
the asymmetric errors in fexperiment three| induced the highest MSPE, and lowest R? values.

Lastly, we found the NAMs difficult to train. These models required training for many epochs, and
extensive hyperparameter tuning. Conversely, the SAMs were fit nearly instantly, and no “manual”
tuning was needed. Finally, the NAMs were consistently larger (in terms of parameter count) than
the SAMs. The parameter count is an imperfect complexity metric, though interesting to note.

4 Discussion

We begin with a note on the scope of this study. In particular, these findings are only relevant when
the data are tabular, and the number of features is relatively small. For instance, AMs are ill-suited
for computer vision tasks. On the other hand, AMs may still be useful in high-dimensional settings,
for instance, when only a small subset of all variables requires careful interpretation.

We now discuss our simulation methods. Obtaining reliable simulation results generally requires
performing many more repetitions (Pawel et al. 2023, 4). However, it is not feasible to train thou-

4Each basis function is determined only by points that lie on some bounded interval (Hastie et al.[[2009, 161).
Local support implies local control.



sands or millions of NNs. Moreover, our use of MSPE and R? interval estimates somewhat mitigates
this effect. These intervals also account for variability due to the relatively small test sets (recall
[Hoyl = 50 Vi, ).

Equally important, further research should employ a more systematic approach to experimental
design. Indeed, we selected the target functions and sample sizes intuitively. Instead, these design
choices should be diligently considered.

Moreover, we acknowledge that our comparison was not entirely fair to NAMs. In reality, practition-
ers invest time and energy tuning hyperparameters by carefully monitoring training and validation
losses, among other metrics. On the other hand, we restricted the flexibility of NAMs by using
one set of hyperparameters for all repetitions. This limitation is the most salient weakness of this
investigation. However, we encountered a trade-off in designing this study. In particular, we had
to choose between many repetitions with one set of hyperparameters, or one repetition with an
“optimal” set of hyperparameters. We initially opted for the latter, but results were too variable to
be useful. It should now be clear why the significant result in fexperiment four| warrants skepticism.

Next, we only performed five experiments. Extensions should explore additional scenarios, including
combinations of the ones we considered. Moreover, NAMs may outperform SAMs as the sample size
or number of variables increases. We only considered two variables, and sample sizes of n = 100 and
n = 1000. Unfortunately, we found NAM training challenging; adding more data and covariates
may exacerbate the problem. Moreover, AMs do not suffer from the “curse of dimensionality” since
the use of univariate functions avoids sparse, high-dimensional neighbourhoods (Hastie et al.|[2009,
257). In other words, increasing the number of features is not particularly interesting.

Lastly, we review SAM estimation. In particular, GCV may be a flawed way to fit SAMs. Indeed,
Bates et al. (2023) show that many in-sample error estimates do not estimate model prediction
error. In fact, these metrics estimate the mean prediction error of a model class, averaged over all
possible training sets drawn from the same distribution as the one in hand. Surprisingly, a simple
training/test split may be more effective in tuning SAMs.

In summary, this work provides a starting point for future research. In particular, more extensive
studies should explore more experimental scenarios and larger sample sizes.

5 Conclusion

We compared two additive model (AM) estimation techniques: splines (SAMs) and neural networks
(NAMs). We assessed via simulation the effect of sample size, and model assumption violations.
Both methods are notably effective at recovering functions from noisy data, given that all model
assumptions are satisfied. On the other hand, we find that asymmetric errors have a considerable,
negative effect on both predictive accuracy and fit. Surprisingly, the smoothness assumption does
not appear to be critical for either model. Indeed, both estimation methods adequately succeed in
approximating a discontinuous function via a smooth one.

Lastly, SAMs are faster to train, and require less “manual” tuning. This advantage cannot be
overstated since computationally convenient techniques are crucial in the age of “Big Data.”

A thorough investigation of AM estimation techniques is worthwhile since these models are cham-
pions of interpretable machine learning (ML). This concept ensures trust and accountability, and
continues to attract those looking for glass-box methods. Crucially, however, the advantages of
interpretable ML extend beyond low prediction error.
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Appendix

Here we demonstrate the abilities of additive models through a brief application to real data. In
particular, we model a country’s life expectancyﬂ as a function of real GDP per capita and public
healthcare expenditure (as a portion of total GDP). We seek an accurate, precise, well-fitting and
interpretable model. Interpretability is crucial since insights from such a model may be of interest
to policymakers, politicians and social scientists alike.

The data were obtained from |Qur World in Data, an online data repository. More specifically, we
performed an inner join by country on three tables (all from 2019), implying 164 data points. Data
cleaning was not necessary, and there were no missing values to impute. A few points appeared to
be outliers, though we included them to assess the robustness of both models. Lastly, we created a
hold-out test set, H, where |H| = 33, to evaluate predictive performance.

We briefly detail the selected models. Once again, the SAM was fit using the gam() function, and
the NAM trained in PyTorch for 400 epochs. The NAM’s feature functions were estimated via NNs
with two hidden layers of two hidden units (each). Batch normalization was used once; after the
first hidden layer of the GDP variable’s NN. We prevented overfitting via early stopping and L,
regularization with A = 0.01. We used SGD with an initial learning rate of vy, = 0.0001 alongside
momentum of S = 0.9. The learning rate was halved after 200 epochs.

details the fitted feature functions. Confidence intervals are omitted for clarity.
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Figure 5: Marginal Effects of GDP per Capita (left) and Healthcare Spending (right)

The models “agree” on the direction of the marginal effectﬂ of both variables. That is, both
models predict (mostly) positive changes in life expectancy as GDP per capita and public healthcare
expenditure increase. However, there are noticeable differences. For instance, consider the leftmost
plot. The NAM (orange) predicts negligible changes in life expectancy as real GDP per capita
exceeds $40000. Strangely, foa¥ is not entirely increasing and concave on its domain. For example,
predicted life expectancy decreases slightly as GDP increases from $50000 to $60000. Consequently,

the economic interpretation is unclear. Conversely, f343 provides a reasonable result: GDP per

5More specifically, the mean life expectancy of a country’s citizens.
6The following discussion of the marginal effects of X on Y is meant to provide intuition. We do not mean to
suggest that changes in X cause changes in Y.
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capita has a positive, diminishing marginal effect on life expectancy. In truth, f3A% appears slightly

overfit, or too sensitive to outliers.

Now, consider the rightmost plot. In this case, both models provide the same, satisfying result: the
marginal effect of public health expenditure on life expectancy is both positive and diminishing.
However, f2424 - appears more concave than fSaM . That is, fo ) is more “optimistic” about
the marginal benefit of healthcare expenditure when this quantity is below its mean (3.5%). The
opposite is true when expenditure exceeds 3.5%. Indeed, the NAM predicts little change in life

expectancy as healthcare expenditure tops 6% of GDP.

Table 6: Real Data Application Results

Model MSPE — IMSPF  R?

SAM 145 [9.2, 254] 0.80
NAM 155 [9.9, 26.4] 0.76

details MSPE and R? values. MSPE double-bootstrap confidence intervals were obtained
by resampling from the population of prediction errors. We find no significant difference in MSPE.
In fact, both models are quite accurate. On average, the SAM and the NAM mistakenly predict
life expectancy by roughly 3.8 and 3.9 years, respectively.

We propose the NAM for this data. Indeed, this model provides a clear economic interpretation of
the effects of GDP and healthcare expenditure on life expectancy.

Finally, we note that the NAM was difficult to train. Indeed, the model kept estimating one
variable’s marginal effect to be zero. Fortunately, a single batch normalization layer in the GDP
covariate’s NN resolved this issue. We observed the same training issue during the [simulation studyj
these models appear to require extensive tuning, and training for many epochs.
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